Algebraic Relations and Integrality of Limit Sets of Maximal Cusp Groups

David Wright

Oklahoma State University

October 25, 2019

Apollonian Gasket

Glowing Gasket

London Math Society Pearls

Dark Gasket

Maskit 1/15 Double Cusp

Color Wheel

Maskit 2/31 Cusp Group

Normalized Hermitian Matrices

Each generalized disk D in the Riemann Sphere $\mathbb{P}^{1}(\mathbb{C})$ corresponds to a unique Hermitian matrix $H=\left[\begin{array}{cc}s & w \\ W & t\end{array}\right]$ such that

Normalized Hermitian Matrices

Each generalized disk D in the Riemann Sphere $\mathbb{P}^{1}(\mathbb{C})$ corresponds to a unique Hermitian matrix $H=\left[\begin{array}{cc}s & w \\ \bar{w} & t\end{array}\right]$ such that

- $\operatorname{det} H=-1$;

Normalized Hermitian Matrices

Each generalized disk D in the Riemann Sphere $\mathbb{P}^{1}(\mathbb{C})$ corresponds to a unique Hermitian matrix $H=\left[\begin{array}{cc}s & w \\ \bar{w} & t\end{array}\right]$ such that

- $\operatorname{det} H=-1$;
- $z^{*} H z<0$ on the "interior" of D.

Normalized Hermitian Matrices

Each generalized disk D in the Riemann Sphere $\mathbb{P}^{1}(\mathbb{C})$ corresponds to a unique Hermitian matrix $H=\left[\begin{array}{cc}s & w \\ \bar{w} & t\end{array}\right]$ such that

- $\operatorname{det} H=-1$;
- $z^{*} H z<0$ on the "interior" of D.
(Note: $H=\left[\begin{array}{cc}\frac{1}{r} & -\frac{c}{r} \\ -\frac{\bar{c}}{r} & \frac{|c|^{2}}{r}-r\end{array}\right]$ for $|z-c|<r$.)

Normalized Hermitian Matrices

Each generalized disk D in the Riemann Sphere $\mathbb{P}^{1}(\mathbb{C})$ corresponds to a unique Hermitian matrix $H=\left[\begin{array}{cc}s & w \\ \bar{w} & t\end{array}\right]$ such that

- $\operatorname{det} H=-1$;
- $z^{*} H z<0$ on the "interior" of D.
(Note: $H=\left[\begin{array}{cc}\frac{1}{r} & -\frac{c}{r} \\ -\frac{\bar{c}}{r} & \frac{|c|^{2}}{r}-r\end{array}\right]$ for $|z-c|<r$.)
Applying a Möbius transformation $m \in \mathrm{PGL}_{2}(\mathbb{C})$ to D produces the disk $m(D)$ corresponding to the normalized Hermitian matrix:

Normalized Hermitian Matrices

Each generalized disk D in the Riemann Sphere $\mathbb{P}^{1}(\mathbb{C})$ corresponds to a unique Hermitian matrix $H=\left[\begin{array}{cc}s & w \\ \bar{w} & t\end{array}\right]$ such that

- $\operatorname{det} H=-1$;
- $z^{*} H z<0$ on the "interior" of D.
(Note: $H=\left[\begin{array}{cc}\frac{1}{r} & -\frac{c}{r} \\ -\frac{\bar{c}}{r} & \frac{|c|^{2}}{r}-r\end{array}\right]$ for $|z-c|<r$.)
Applying a Möbius transformation $m \in \mathrm{PGL}_{2}(\mathbb{C})$ to D produces the disk $m(D)$ corresponding to the normalized Hermitian matrix:

$$
m(H)=\left(m^{-1}\right)^{*} H m^{-1}
$$

Integrality

For the ring of integers O_{K} of an algebraic number field K, and a fractional O_{K}-ideal \mathfrak{a}, if an arrangement of disks in $\mathbb{P}^{1}(\mathbb{C})$ is generated by applying a subgroup of $\mathrm{PSL}_{2}\left(O_{K}\right)$ to a set of disks with forms $H \in M_{2,2}(\mathfrak{a})$, then

Integrality

For the ring of integers O_{K} of an algebraic number field K, and a fractional O_{K}-ideal \mathfrak{a}, if an arrangement of disks in $\mathbb{P}^{1}(\mathbb{C})$ is generated by applying a subgroup of $\mathrm{PSL}_{2}\left(O_{K}\right)$ to a set of disks with forms $H \in M_{2,2}(\mathfrak{a})$, then

- All the disks have forms $H=\left[\begin{array}{cc}s & w \\ \bar{w} & t\end{array}\right] \in M_{2,2}(\mathfrak{a})$.

Integrality

For the ring of integers O_{K} of an algebraic number field K, and a fractional O_{K}-ideal \mathfrak{a}, if an arrangement of disks in $\mathbb{P}^{1}(\mathbb{C})$ is generated by applying a subgroup of $\mathrm{PSL}_{2}\left(O_{K}\right)$ to a set of disks with forms $H \in M_{2,2}(\mathfrak{a})$, then

- All the disks have forms $H=\left[\begin{array}{cc}s & w \\ \bar{w} & t\end{array}\right] \in M_{2,2}(\mathfrak{a})$.
- All the signed curvatures s and co-curvatures t are in $\mathfrak{a} \cap \mathbb{R}$.

Integrality

For the ring of integers O_{K} of an algebraic number field K, and a fractional O_{K}-ideal \mathfrak{a}, if an arrangement of disks in $\mathbb{P}^{1}(\mathbb{C})$ is generated by applying a subgroup of $\mathrm{PSL}_{2}\left(O_{K}\right)$ to a set of disks with forms $H \in M_{2,2}(\mathfrak{a})$, then

- All the disks have forms $H=\left[\begin{array}{cc}s & w \\ \bar{w} & t\end{array}\right] \in M_{2,2}(\mathfrak{a})$.
- All the signed curvatures s and co-curvatures t are in $\mathfrak{a} \cap \mathbb{R}$.
- All the \mathbb{C}-corners w are in \mathfrak{a}.

Relations among disks

D_{1} and D_{2} are externally tangent disks if and only if the normalized forms satisfy

Relations among disks

D_{1} and D_{2} are externally tangent disks if and only if the normalized forms satisfy $\operatorname{det}\left(H_{1}+H_{2}\right)=0$.

Relations among disks

D_{1} and D_{2} are externally tangent disks if and only if the normalized forms satisfy $\operatorname{det}\left(H_{1}+H_{2}\right)=0$.
If the normalized forms $\left\{H_{j}\right\}$ satisfy

$$
c_{1} H_{1}+\cdots+c_{n} H_{n}=O
$$

then for any Möbius transformation m,

Relations among disks

D_{1} and D_{2} are externally tangent disks if and only if the normalized forms satisfy $\operatorname{det}\left(H_{1}+H_{2}\right)=0$.
If the normalized forms $\left\{H_{j}\right\}$ satisfy

$$
c_{1} H_{1}+\cdots+c_{n} H_{n}=O
$$

then for any Möbius transformation m,

$$
c_{1} m\left(H_{1}\right)+\cdots+c_{n} m\left(H_{n}\right)=O
$$

Relations among disks

D_{1} and D_{2} are externally tangent disks if and only if the normalized forms satisfy $\operatorname{det}\left(H_{1}+H_{2}\right)=0$.
If the normalized forms $\left\{H_{j}\right\}$ satisfy

$$
c_{1} H_{1}+\cdots+c_{n} H_{n}=O
$$

then for any Möbius transformation m,

$$
c_{1} m\left(H_{1}\right)+\cdots+c_{n} m\left(H_{n}\right)=0
$$

Proof:

Relations among disks

D_{1} and D_{2} are externally tangent disks if and only if the normalized forms satisfy $\operatorname{det}\left(H_{1}+H_{2}\right)=0$.
If the normalized forms $\left\{H_{j}\right\}$ satisfy

$$
c_{1} H_{1}+\cdots+c_{n} H_{n}=O
$$

then for any Möbius transformation m,

$$
c_{1} m\left(H_{1}\right)+\cdots+c_{n} m\left(H_{n}\right)=O
$$

Proof: Distributive law of matrix multiplication.

Quadratic relations

$b(u, v)=$ real symmetric bilinear form in $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$.
If $\left\{H_{j}=\left[\begin{array}{cc}s_{j} & w_{j} \\ w_{j} & t_{j}\end{array}\right]\right\}_{j=1}^{n}$ satisfy

Quadratic relations

$b(u, v)=$ real symmetric bilinear form in $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$.
If $\left\{H_{j}=\left[\begin{array}{cc}s_{j} & w_{j} \\ w_{j} & t_{j}\end{array}\right]\right\}_{j=1}^{n}$ satisfy

$$
\begin{aligned}
b(s, s)=0, & b(w, w)=0, & & b(t, t)=0, \\
b(s, w)=0, & b(t, w)=0, & & b(s, t)=-b(w, \bar{w}) .
\end{aligned}
$$

then, for Möbius $m,\left\{m\left(H_{j}\right)=\left[\begin{array}{cc}s_{j}^{\prime} & w_{j}^{\prime} \\ w_{j}^{\prime} & t_{j}^{\prime}\end{array}\right]\right\}$ satisfy

Quadratic relations

$b(u, v)=$ real symmetric bilinear form in $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$.
If $\left\{H_{j}=\left[\begin{array}{cc}s_{j} & w_{j} \\ w_{j} & t_{j}\end{array}\right]\right\}_{j=1}^{n}$ satisfy

$$
\begin{aligned}
b(s, s)=0, & b(w, w)=0, & & b(t, t)=0, \\
b(s, w)=0, & b(t, w)=0, & & b(s, t)=-b(w, \bar{w}) .
\end{aligned}
$$

then, for Möbius $m,\left\{m\left(H_{j}\right)=\left[\begin{array}{cc}s_{j}^{\prime} & w_{j}^{\prime} \\ w_{j}^{\prime} & t_{j}^{\prime}\end{array}\right]\right\}$ satisfy

$$
\begin{array}{rlrl}
b\left(s^{\prime}, s^{\prime}\right) & =0, & b\left(w^{\prime}, w^{\prime}\right)=0, & b\left(t^{\prime}, t^{\prime}\right)=0, \\
b\left(s^{\prime}, w^{\prime}\right)=0, & b\left(t^{\prime}, w^{\prime}\right)=0, & b\left(s^{\prime}, t^{\prime}\right)=-b\left(w^{\prime}, \overline{w^{\prime}}\right) .
\end{array}
$$

Hermitian relation

Proof of binary form theorem:

Hermitian relation

Proof of binary form theorem:
Just verify it for $m=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. (RREF)

Hermitian relation

Proof of binary form theorem:
Just verify it for $m=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \cdot$ (RREF)

Hermitian relation

Proof of binary form theorem:
Just verify it for $m=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. (RREF)

Corollary: Given $\left\{H_{j}\right\}$ satisfies the 6 stated equations,

Hermitian relation

Proof of binary form theorem:
Just verify it for $m=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. (RREF)

Corollary: Given $\left\{H_{j}\right\}$ satisfies the 6 stated equations,

$$
b(\bar{H}, H)=O
$$

Hermitian Descartes

Hermitian Descartes

Standard Descartes Forms:

$$
\left[\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right],\left[\begin{array}{cc}
2 & -i \\
i & 0
\end{array}\right],\left[\begin{array}{cc}
0 & -i \\
i & 2
\end{array}\right],\left[\begin{array}{cc}
2 & -2-i \\
-2+i & 2
\end{array}\right] .
$$

Hermitian Descartes

Standard Descartes Forms:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right],\left[\begin{array}{cc}
2 & -i \\
i & 0
\end{array}\right],\left[\begin{array}{cc}
0 & -i \\
i & 2
\end{array}\right],\left[\begin{array}{cc}
2 & -2-i \\
-2+i & 2
\end{array}\right] .} \\
& b(u, v)=2 \sum_{j=1}^{4} u_{j} v_{j}-\left(\sum_{j=1}^{4} u_{j}\right)\left(\sum_{j=1}^{4} v_{j}\right)
\end{aligned}
$$

Hermitian Descartes

Standard Descartes Forms:
$\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right],\left[\begin{array}{cc}2 & -i \\ i & 0\end{array}\right],\left[\begin{array}{cc}0 & -i \\ i & 2\end{array}\right],\left[\begin{array}{cc}2 & -2-i \\ -2+i & 2\end{array}\right]$.
$b(u, v)=2 \sum_{j=1}^{4} u_{j} v_{j}-\left(\sum_{j=1}^{4} u_{j}\right)\left(\sum_{j=1}^{4} v_{j}\right)$
$2 \sum_{j=1}^{4} \overline{H_{j}} H_{j}=\left(\sum_{j=1}^{4} \overline{H_{j}}\right)\left(\sum_{j=1}^{4} H_{j}\right)$.

Hermitian Descartes

Standard Descartes Forms:
$\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right],\left[\begin{array}{cc}2 & -i \\ i & 0\end{array}\right],\left[\begin{array}{cc}0 & -i \\ i & 2\end{array}\right],\left[\begin{array}{cc}2 & -2-i \\ -2+i & 2\end{array}\right]$.
$b(u, v)=2 \sum_{j=1}^{4} u_{j} v_{j}-\left(\sum_{j=1}^{4} u_{j}\right)\left(\sum_{j=1}^{4} v_{j}\right)$
$2 \sum_{j=1}^{4} \overline{H_{j}} H_{j}=\left(\sum_{j=1}^{4} \overline{H_{j}}\right)\left(\sum_{j=1}^{4} H_{j}\right)$.
$2\left(s_{1}^{2}+s_{2}^{2}+s_{3}^{2}+s_{4}^{2}\right)=\left(s_{1}+s_{2}+s_{3}+s_{4}\right)^{2}$. (original version)

Hermitian Coxeter

Hermitian Coxeter

Standard Coxeter Forms: $\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right],\left[\begin{array}{cc}2 & -i \\ i & 0\end{array}\right],\left[\begin{array}{cc}0 & -i \\ i & 2\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Hermitian Coxeter

Standard Coxeter Forms: $\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right],\left[\begin{array}{cc}2 & -i \\ i & 0\end{array}\right],\left[\begin{array}{cc}0 & -i \\ i & 2\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

$$
b(u, v)=2 u_{4} v_{4}-\sum_{1 \leq j<k \leq 3} u_{j} v_{k}+u_{k} v_{j} .
$$

Hermitian Coxeter

Standard Coxeter Forms: $\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right],\left[\begin{array}{cc}2 & -i \\ i & 0\end{array}\right],\left[\begin{array}{cc}0 & -i \\ i & 2\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. $b(u, v)=2 u_{4} v_{4}-\sum_{1 \leq j<k \leq 3} u_{j} v_{k}+u_{k} v_{j}$.
$2 \overline{H_{4}} H_{4}=\sum_{1 \leq j<k \leq 3} \overline{H_{j}} H_{k}+\overline{H_{k}} H_{j}$.

Hermitian Coxeter

Standard Coxeter Forms: $\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right],\left[\begin{array}{cc}2 & -i \\ i & 0\end{array}\right],\left[\begin{array}{cc}0 & -i \\ i & 2\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

$$
b(u, v)=2 u_{4} v_{4}-\sum_{1 \leq j<k \leq 3} u_{j} v_{k}+u_{k} v_{j} .
$$

$2 \bar{H}_{4} H_{4}=\sum_{1 \leq j<k \leq 3} \overline{H_{j}} H_{k}+\bar{H}_{k} H_{j}$.
$s_{4}^{2}=s_{1} s_{2}+s_{2} s_{3}+s_{3} s_{1}$. (original version)

Hermitian Steiner

Hermitian Steiner

$H_{+}+H_{-}=2 \tau^{2} J$ where $\tau=\tan \frac{\pi}{n}, J=\frac{1}{n} \sum_{j=1}^{n} H_{j}$.

Hermitian Steiner

$H_{+}+H_{-}=2 \tau^{2} J$ where $\tau=\tan \frac{\pi}{n}, J=\frac{1}{n} \sum_{j=1}^{n} H_{j}$.
$H=H_{ \pm}$satisfy, with $K=\frac{1}{n} \sum_{j=1}^{n} \overline{H_{j}} H_{j}$,

Hermitian Steiner

$$
\begin{aligned}
& H_{+}+H_{-}=2 \tau^{2} J \text { where } \tau=\tan \frac{\pi}{n}, J=\frac{1}{n} \sum_{j=1}^{n} H_{j} . \\
& H=H_{ \pm} \text {satisfy, with } K=\frac{1}{n} \sum_{j=1}^{n} \overline{H_{j}} H_{j}, \\
& 2\left(\bar{H} H+\tau^{2} K\right)=\overline{\left(H+\tau^{2} J\right)}\left(H+\tau^{2} J\right)+\left(3-\tau^{2}\right) \tau^{2} J J
\end{aligned}
$$

Hermitian Steiner

$H_{+}+H_{-}=2 \tau^{2} J$ where $\tau=\tan \frac{\pi}{n}, J=\frac{1}{n} \sum_{j=1}^{n} H_{j}$.
$H=H_{ \pm}$satisfy, with $K=\frac{1}{n} \sum_{j=1}^{n} \overline{H_{j}} H_{j}$,

$$
\begin{aligned}
& 2\left(\bar{H} H+\tau^{2} K\right)=\overline{\left(H+\tau^{2} J\right)}\left(H+\tau^{2} J\right)+\left(3-\tau^{2}\right) \tau^{2} \bar{J} J \\
& 2\left(s^{2}+\frac{\tau^{2}}{n} \sum_{j=1}^{n} s_{j}^{2}\right)=\left(s+\frac{\tau^{2}}{n} \sum_{j=1}^{n} s_{j}\right)^{2}+\frac{\left(3-\tau^{2}\right) \tau^{2}}{n^{2}}\left(\sum_{j=1}^{n} s_{j}\right)^{2} .
\end{aligned}
$$

Another Stanza?

Possibly insert into the poetry of Soddy-Lagarias-Mallows-Wilkes ...??

Another Stanza?

Possibly insert into the poetry of Soddy-Lagarias-Mallows-Wilkes ...??
Much labor has made us aware,
The form of a circle is square.
Though surely a square is not round, A similar rule again is found.

Another Stanza?

Possibly insert into the poetry of Soddy-Lagarias-Mallows-Wilkes ...??
Much labor has made us aware,
The form of a circle is square.
Though surely a square is not round, A similar rule again is found.

??

Maximal cusp groups

$G=\left\langle a_{1}, \ldots, a_{g}\right\rangle$ is a freely generated, maximally parabolic, discrete group of Möbius transformations. From Keen-Maskit-Series, 1993:

Maximal cusp groups

$G=\left\langle a_{1}, \ldots, a_{g}\right\rangle$ is a freely generated, maximally parabolic, discrete group of Möbius transformations. From Keen-Maskit-Series, 1993:

- G is geometrically finite.

Maximal cusp groups

$G=\left\langle a_{1}, \ldots, a_{g}\right\rangle$ is a freely generated, maximally parabolic, discrete group of Möbius transformations. From Keen-Maskit-Series, 1993:

- G is geometrically finite.
- G is an algebraic limit of Schottky groups.

Maximal cusp groups

$G=\left\langle a_{1}, \ldots, a_{g}\right\rangle$ is a freely generated, maximally parabolic, discrete group of Möbius transformations. From Keen-Maskit-Series, 1993:

- G is geometrically finite.
- G is an algebraic limit of Schottky groups.
- Every component of the ordinary set of G is a disk on which G represents a triply-punctured sphere.

Maximal cusp groups

$G=\left\langle a_{1}, \ldots, a_{g}\right\rangle$ is a freely generated, maximally parabolic, discrete group of Möbius transformations. From Keen-Maskit-Series, 1993:

- G is geometrically finite.
- G is an algebraic limit of Schottky groups.
- Every component of the ordinary set of G is a disk on which G represents a triply-punctured sphere.
- There are $2 g-2$ equivalence classes of disks in the ordinary set.

Maximal cusp groups

$G=\left\langle a_{1}, \ldots, a_{g}\right\rangle$ is a freely generated, maximally parabolic, discrete group of Möbius transformations. From Keen-Maskit-Series, 1993:

- G is geometrically finite.
- G is an algebraic limit of Schottky groups.
- Every component of the ordinary set of G is a disk on which G represents a triply-punctured sphere.
- There are $2 g-2$ equivalence classes of disks in the ordinary set.
- There are $3 g-3$ classes of words which are parabolic in G, up to conjugacy, inverse, and powers.

Maximal cusp groups

$G=\left\langle a_{1}, \ldots, a_{g}\right\rangle$ is a freely generated, maximally parabolic, discrete group of Möbius transformations. From Keen-Maskit-Series, 1993:

- G is geometrically finite.
- G is an algebraic limit of Schottky groups.
- Every component of the ordinary set of G is a disk on which G represents a triply-punctured sphere.
- There are $2 g-2$ equivalence classes of disks in the ordinary set.
- There are $3 g-3$ classes of words which are parabolic in G, up to conjugacy, inverse, and powers.
- Any two representations of G for which the same words in $a_{j}^{ \pm 1}$ are parabolic are conjugate in $\mathrm{PSL}_{2}(\mathbb{C})$.

Limit set partitions and the circle web

- Floyd, 1980: continuous map $\phi: \bar{G} \rightarrow$ Limit Set $\Lambda(G)$, where $\bar{G}=$ group completion of G. (infinite words in G)

Limit set partitions and the circle web

- Floyd, 1980: continuous map $\phi: \bar{G} \rightarrow$ Limit Set $\Lambda(G)$, where $\bar{G}=$ group completion of G. (infinite words in G)
- ϕ is $1-1$ except at fixed points of parabolic elements where it is $2-1$.

Limit set partitions and the circle web

- Floyd, 1980: continuous map $\phi: \bar{G} \rightarrow$ Limit Set $\Lambda(G)$, where $\bar{G}=$ group completion of G. (infinite words in G)
- ϕ is $1-1$ except at fixed points of parabolic elements where it is $2-1$.
- $\Lambda\left(a_{j}^{ \pm 1}\right)=$ all limit points equal to ϕ (infinite word beginning with $\left.a_{j}^{ \pm 1}\right)$.

Limit set partitions and the circle web

- Floyd, 1980: continuous map $\phi: \bar{G} \rightarrow$ Limit Set $\Lambda(G)$, where $\bar{G}=$ group completion of G. (infinite words in G)
- ϕ is $1-1$ except at fixed points of parabolic elements where it is $2-1$.
- $\Lambda\left(a_{j}^{ \pm 1}\right)=$ all limit points equal to ϕ (infinite word beginning with $a_{j}^{ \pm 1}$).
- Circle Web of G : all disks in the ordinary set of G with boundary circles intersecting at least two $\Lambda\left(a_{j}^{ \pm 1}\right)$.

Limit set partitions and the circle web

- Floyd, 1980: continuous map $\phi: \bar{G} \rightarrow$ Limit Set $\Lambda(G)$, where $\bar{G}=$ group completion of G. (infinite words in G)
- ϕ is $1-1$ except at fixed points of parabolic elements where it is $2-1$.
- $\Lambda\left(a_{j}^{ \pm 1}\right)=$ all limit points equal to ϕ (infinite word beginning with $\left.a_{j}^{ \pm 1}\right)$.
- Circle Web of G : all disks in the ordinary set of G with boundary circles intersecting at least two $\Lambda\left(a_{j}^{ \pm 1}\right)$.
- The circles in the web pass through fixed points of parabolic words of minimal length.

Limit set partitions and the circle web

- Floyd, 1980: continuous map $\phi: \bar{G} \rightarrow$ Limit Set $\Lambda(G)$, where $\bar{G}=$ group completion of G. (infinite words in G)
- ϕ is $1-1$ except at fixed points of parabolic elements where it is $2-1$.
- $\Lambda\left(a_{j}^{ \pm 1}\right)=$ all limit points equal to ϕ (infinite word beginning with $\left.a_{j}^{ \pm 1}\right)$.
- Circle Web of G : all disks in the ordinary set of G with boundary circles intersecting at least two $\Lambda\left(a_{j}^{ \pm 1}\right)$.
- The circles in the web pass through fixed points of parabolic words of minimal length.
- The junction circles pass through three such fixed points, and are determined by those points. Each equivalence class of disks contains at least one junction disk.

Limit set partitions and the circle web

- Floyd, 1980: continuous map $\phi: \bar{G} \rightarrow$ Limit Set $\Lambda(G)$, where $\bar{G}=$ group completion of G. (infinite words in G)
- ϕ is $1-1$ except at fixed points of parabolic elements where it is $2-1$.
- $\Lambda\left(a_{j}^{ \pm 1}\right)=$ all limit points equal to ϕ (infinite word beginning with $a_{j}^{ \pm 1}$).
- Circle Web of G : all disks in the ordinary set of G with boundary circles intersecting at least two $\Lambda\left(a_{j}^{ \pm 1}\right)$.
- The circles in the web pass through fixed points of parabolic words of minimal length.
- The junction circles pass through three such fixed points, and are determined by those points. Each equivalence class of disks contains at least one junction disk.
- There is an algebraic number field K such that all the fixed points of parabolic elements may be chosen in K. ("field of definition")

Maskit 1/2 Cusp

- Gens: $a(z)=1+\sqrt{-3}+\frac{1}{z}, \quad b(z)=z+2$. Parabolic: $B a^{2}, B A b a, b$.

Maskit 1/2 Cusp

- Gens: $a(z)=1+\sqrt{-3}+\frac{1}{z}, \quad b(z)=z+2$. Parabolic: $B a^{2}, B A b a, b$.
- Circles: $L_{0}=\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right], L_{1}=\left[\begin{array}{cc}0 & -i \\ i & 2 \sqrt{3}\end{array}\right]$,

$$
\begin{aligned}
& C_{0}=\left[\begin{array}{cc}
\sqrt{3} & \sqrt{3}-i \\
\sqrt{3}+i & \sqrt{3}
\end{array}\right], C_{1}=\left[\begin{array}{cc}
\sqrt{3} & -2 i \\
2 i & \sqrt{3}
\end{array}\right] \\
& C_{2}=\left[\begin{array}{cc}
\sqrt{3} & -\sqrt{3}-i \\
-\sqrt{3}+i & \sqrt{3}
\end{array}\right], C_{3}=\left[\begin{array}{cc}
\sqrt{3} & -2 \sqrt{3}-2 i \\
-2 \sqrt{3}+2 i & 5 \sqrt{3}
\end{array}\right] .
\end{aligned}
$$

Maskit 1/2 Cusp

- Gens: $a(z)=1+\sqrt{-3}+\frac{1}{z}, \quad b(z)=z+2$. Parabolic: $B a^{2}, B A b a, b$.
- Circles: $L_{0}=\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right], L_{1}=\left[\begin{array}{cc}0 & -i \\ i & 2 \sqrt{3}\end{array}\right]$,
$C_{0}=\left[\begin{array}{cc}\sqrt{3} & \sqrt{3}-i \\ \sqrt{3}+i & \sqrt{3}\end{array}\right], C_{1}=\left[\begin{array}{cc}\sqrt{3} & -2 i \\ 2 i & \sqrt{3}\end{array}\right]$,
$C_{2}=\left[\begin{array}{cc}\sqrt{3} & -\sqrt{3}-i \\ -\sqrt{3}+i & \sqrt{3}\end{array}\right], C_{3}=\left[\begin{array}{cc}\sqrt{3} & -2 \sqrt{3}-2 i \\ -2 \sqrt{3}+2 i & 5 \sqrt{3}\end{array}\right]$.
- Curvatures: $n \sqrt{3}, n=0,1,2,5,6,8,9,12,13,17,18,20,21,22,24,25,29, \ldots$

Maskit 1/2 Cusp

- Gens: $a(z)=1+\sqrt{-3}+\frac{1}{z}, \quad b(z)=z+2$. Parabolic: $B a^{2}, B A b a, b$.
- Circles: $L_{0}=\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right], L_{1}=\left[\begin{array}{cc}0 & -i \\ i & 2 \sqrt{3}\end{array}\right]$,

$$
\begin{aligned}
& C_{0}=\left[\begin{array}{cc}
\sqrt{3} & \sqrt{3}-i \\
\sqrt{3}+i & \sqrt{3}
\end{array}\right], C_{1}=\left[\begin{array}{cc}
\sqrt{3} & -2 i \\
2 i & \sqrt{3}
\end{array}\right] \\
& C_{2}=\left[\begin{array}{cc}
\sqrt{3} & -\sqrt{3}-i \\
-\sqrt{3}+i & \sqrt{3}
\end{array}\right], C_{3}=\left[\begin{array}{cc}
\sqrt{3} & -2 \sqrt{3}-2 i \\
-2 \sqrt{3}+2 i & 5 \sqrt{3}
\end{array}\right] .
\end{aligned}
$$

- Curvatures: $n \sqrt{3}, n=0,1,2,5,6,8,9,12,13,17,18,20,21,22,24,25,29, \ldots$
- \mathbb{C}-corners: all of form $m \sqrt{3}+n i, m, n \in \mathbb{Z}$.

Maskit 1/2 Cusp

- Gens: $a(z)=1+\sqrt{-3}+\frac{1}{z}, \quad b(z)=z+2$. Parabolic: $B a^{2}, B A b a, b$.
- Circles: $L_{0}=\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right], L_{1}=\left[\begin{array}{cc}0 & -i \\ i & 2 \sqrt{3}\end{array}\right]$,

$$
\begin{aligned}
& C_{0}=\left[\begin{array}{cc}
\sqrt{3} & \sqrt{3}-i \\
\sqrt{3}+i & \sqrt{3}
\end{array}\right], C_{1}=\left[\begin{array}{cc}
\sqrt{3} & -2 i \\
2 i & \sqrt{3}
\end{array}\right] \\
& C_{2}=\left[\begin{array}{cc}
\sqrt{3} & -\sqrt{3}-i \\
-\sqrt{3}+i & \sqrt{3}
\end{array}\right], C_{3}=\left[\begin{array}{cc}
\sqrt{3} & -2 \sqrt{3}-2 i \\
-2 \sqrt{3}+2 i & 5 \sqrt{3}
\end{array}\right] .
\end{aligned}
$$

- Curvatures: $n \sqrt{3}, n=0,1,2,5,6,8,9,12,13,17,18,20,21,22,24,25,29, \ldots$
- \mathbb{C}-corners: all of form $m \sqrt{3}+n i, m, n \in \mathbb{Z}$.
- Recursion: $C_{0}+C_{2}=2 L_{0}+2 C_{1}, C_{1}+C_{3}=2 L_{1}+2 C_{2}$.

Maskit 1/3 Cusp

Maskit 1/3 Cusp

- Parabolic: $B a^{3}, B A b a, b$.

Maskit 1/3 Cusp

- Parabolic: $B a^{3}, B A b a, b$.
- Gens: $b(z)=z+2$,

$$
a(z)=\mu+\frac{1}{z}=\frac{4-\sqrt{2 \sqrt{41}-10}+i(2+\sqrt{10+2 \sqrt{41}})}{4}+\frac{1}{z} .
$$

Maskit 1/3 Cusp

- Parabolic: $B a^{3}, B A b a, b$.
- Gens: $b(z)=z+2$,

$$
\begin{aligned}
& a(z)=\mu+\frac{1}{z}=\frac{4-\sqrt{2 \sqrt{41}-10}+i(2+\sqrt{10+2 \sqrt{41}})}{4}+\frac{1}{z} \\
& \mu^{2}-(2+i) \mu+2+2 i=0
\end{aligned}
$$

Maskit $3 / 10=\frac{1}{3+\frac{1}{3}}$ Cusp

Maskit 3/10 $=\frac{1}{3+\frac{1}{3}}$ Cusp

- Parabolic: $B a^{4} B a^{3} B a^{3}, B A b a, b$.

Maskit 3/10 $=\frac{1}{3+\frac{1}{3}}$ Cusp

- Parabolic: $B a^{4} B a^{3} B a^{3}, B A b a, b$.
- Gens: $b(z)=z+2, a(z)=\mu+\frac{1}{z}=\frac{1+\sqrt{-11}}{2}+\frac{1}{z}$.

Maskit 3/10 $=\frac{1}{3+\frac{1}{3}}$ Cusp

- Parabolic: $B a^{4} B a^{3} B a^{3}, B A b a, b$.
- Gens: $b(z)=z+2, a(z)=\mu+\frac{1}{z}=\frac{1+\sqrt{-11}}{2}+\frac{1}{z}$.
- $\mu^{2}-\mu+3=0$.

Maskit 3/10 $=\frac{1}{3+\frac{1}{3}}$ Cusp

- Parabolic: $B a^{4} B a^{3} B a^{3}, B A b a, b$.
- Gens: $b(z)=z+2, a(z)=\mu+\frac{1}{z}=\frac{1+\sqrt{-11}}{2}+\frac{1}{z}$.
- $\mu^{2}-\mu+3=0$.
- Circles $L_{0}=\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right], L_{1}=\left[\begin{array}{cc}0 & -i \\ i & \sqrt{11}\end{array}\right], C_{0}=\left[\begin{array}{cc}\sqrt{11} & -i+\sqrt{11} \\ i+\sqrt{11} & \sqrt{11}\end{array}\right]$,

Maskit 3/10 $=\frac{1}{3+\frac{1}{3}}$ Cusp

- Parabolic: $B a^{4} B a^{3} B a^{3}, B A b a, b$.
- Gens: $b(z)=z+2, a(z)=\mu+\frac{1}{z}=\frac{1+\sqrt{-11}}{2}+\frac{1}{z}$.
- $\mu^{2}-\mu+3=0$.
- Circles $L_{0}=\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right], L_{1}=\left[\begin{array}{cc}0 & -i \\ i & \sqrt{11}\end{array}\right], C_{0}=\left[\begin{array}{cc}\sqrt{11} & -i+\sqrt{11} \\ i+\sqrt{11} & \sqrt{11}\end{array}\right]$,
- Curvatures: $n \sqrt{11}, n=$
$0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22, \ldots$

Maskit 3/10 $=\frac{1}{3+\frac{1}{3}}$ Cusp

- Parabolic: $B a^{4} B a^{3} B a^{3}, B A b a, b$.
- Gens: $b(z)=z+2, a(z)=\mu+\frac{1}{z}=\frac{1+\sqrt{-11}}{2}+\frac{1}{z}$.
- $\mu^{2}-\mu+3=0$.
- Circles $L_{0}=\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right], L_{1}=\left[\begin{array}{cc}0 & -i \\ i & \sqrt{11}\end{array}\right], C_{0}=\left[\begin{array}{cc}\sqrt{11} & -i+\sqrt{11} \\ i+\sqrt{11} & \sqrt{11}\end{array}\right]$,
- Curvatures: $n \sqrt{11}, n=$ $0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22, \ldots$
- \mathbb{C}-corners: of form $\frac{m \sqrt{11}+n i}{2}, n \equiv m(\bmod 2)$.

Maskit 3/10 $=\frac{1}{3+\frac{1}{3}}$ Cusp

- Parabolic: $B a^{4} B a^{3} B a^{3}, B A b a, b$.
- Gens: $b(z)=z+2, a(z)=\mu+\frac{1}{z}=\frac{1+\sqrt{-11}}{2}+\frac{1}{z}$.
- $\mu^{2}-\mu+3=0$.
- Circles $L_{0}=\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right], L_{1}=\left[\begin{array}{cc}0 & -i \\ i & \sqrt{11}\end{array}\right], C_{0}=\left[\begin{array}{cc}\sqrt{11} & -i+\sqrt{11} \\ i+\sqrt{11} & \sqrt{11}\end{array}\right]$,
- Curvatures: $n \sqrt{11}, n=$ $0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22, \ldots$
- \mathbb{C}-corners: of form $\frac{m \sqrt{11}+n i}{2}, n \equiv m(\bmod 2)$.
- Recursions: $4 C_{0}+C_{4}=3 L_{0}+3 C_{1}, C_{0}+C_{3}=L_{1}+C_{1}=L_{0}+C_{2}, \ldots$

Map of Maskit Cusps

Genus 2 Maximal Cusp

Genus 2 Maximal Cusp

Genus 2 Maximal Cusp

Genus 3 Maximal Cusp

Maskit 3/10 Fruit Salad

Thanks!

