Algebraic Relations and Integrality of Limit Sets of Maximal Cusp Groups

David Wright

Oklahoma State University

October 25, 2019

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit Se

Apollonian Gasket

avid Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit So

Glowing Gasket

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit Se

London Math Society Pearls

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit S

October 25, 2019 4 / 31

Dark Gasket

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit Se

Maskit 1/15 Double Cusp

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit So

Color Wheel

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit Se

Maskit 2/31 Cusp Group

David Wright (Oklahoma State University) Algebraic Relations and Integrality of I

Each generalized disk D in the Riemann Sphere $\mathbb{P}^1(\mathbb{C})$ corresponds to a unique Hermitian matrix $H = \begin{bmatrix} s & w \\ \overline{w} & t \end{bmatrix}$ such that

Each generalized disk D in the Riemann Sphere $\mathbb{P}^1(\mathbb{C})$ corresponds to a unique Hermitian matrix $H = \begin{bmatrix} s & w \\ \overline{w} & t \end{bmatrix}$ such that

• det H = -1;

Each generalized disk D in the Riemann Sphere $\mathbb{P}^1(\mathbb{C})$ corresponds to a unique Hermitian matrix $H = \begin{bmatrix} s & w \\ \overline{w} & t \end{bmatrix}$ such that

- det H = -1;
- $z^*Hz < 0$ on the "interior" of D.

Each generalized disk D in the Riemann Sphere $\mathbb{P}^1(\mathbb{C})$ corresponds to a unique Hermitian matrix $H = \begin{bmatrix} s & w \\ \overline{w} & t \end{bmatrix}$ such that

• det
$$H = -1$$
;
• $z^* Hz < 0$ on the "interior" of D .
(Note: $H = \begin{bmatrix} \frac{1}{r} & -\frac{c}{r} \\ -\frac{c}{r} & \frac{|c|^2}{r} - r \end{bmatrix}$ for $|z - c| < r$.)

Each generalized disk D in the Riemann Sphere $\mathbb{P}^1(\mathbb{C})$ corresponds to a unique Hermitian matrix $H = \begin{bmatrix} s & w \\ \overline{w} & t \end{bmatrix}$ such that

• det H = -1; • $z^*Hz < 0$ on the "interior" of D. (Note: $H = \begin{bmatrix} \frac{1}{r} & -\frac{c}{r} \\ -\frac{\overline{c}}{r} & \frac{|c|^2}{r} - r \end{bmatrix}$ for |z - c| < r.)

Applying a Möbius transformation $m \in PGL_2(\mathbb{C})$ to D produces the disk m(D) corresponding to the normalized Hermitian matrix:

Each generalized disk D in the Riemann Sphere $\mathbb{P}^1(\mathbb{C})$ corresponds to a unique Hermitian matrix $H = \begin{bmatrix} s & w \\ \overline{w} & t \end{bmatrix}$ such that

• det H = -1; • $z^*Hz < 0$ on the "interior" of D. (Note: $H = \begin{bmatrix} \frac{1}{r} & -\frac{c}{r} \\ -\frac{\overline{c}}{r} & \frac{|c|^2}{r} - r \end{bmatrix}$ for |z - c| < r.)

Applying a Möbius transformation $m \in PGL_2(\mathbb{C})$ to D produces the disk m(D) corresponding to the normalized Hermitian matrix:

$$m(H) = (m^{-1})^* H m^{-1}$$

For the ring of integers O_K of an algebraic number field K, and a fractional O_K -ideal \mathfrak{a} , if an arrangement of disks in $\mathbb{P}^1(\mathbb{C})$ is generated by applying a subgroup of $\mathrm{PSL}_2(O_K)$ to a set of disks with forms $H \in M_{2,2}(\mathfrak{a})$, then

For the ring of integers O_K of an algebraic number field K, and a fractional O_K -ideal \mathfrak{a} , if an arrangement of disks in $\mathbb{P}^1(\mathbb{C})$ is generated by applying a subgroup of $\mathrm{PSL}_2(O_K)$ to a set of disks with forms $H \in M_{2,2}(\mathfrak{a})$, then

• All the disks have forms
$$H = \begin{bmatrix} s & w \\ \overline{w} & t \end{bmatrix} \in M_{2,2}(\mathfrak{a}).$$

For the ring of integers O_K of an algebraic number field K, and a fractional O_K -ideal \mathfrak{a} , if an arrangement of disks in $\mathbb{P}^1(\mathbb{C})$ is generated by applying a subgroup of $\mathrm{PSL}_2(O_K)$ to a set of disks with forms $H \in M_{2,2}(\mathfrak{a})$, then

• All the disks have forms
$$H = \begin{bmatrix} s & w \\ \overline{w} & t \end{bmatrix} \in M_{2,2}(\mathfrak{a}).$$

• All the signed curvatures s and co-curvatures t are in $\mathfrak{a} \cap \mathbb{R}$.

For the ring of integers O_K of an algebraic number field K, and a fractional O_K -ideal \mathfrak{a} , if an arrangement of disks in $\mathbb{P}^1(\mathbb{C})$ is generated by applying a subgroup of $\mathrm{PSL}_2(O_K)$ to a set of disks with forms $H \in M_{2,2}(\mathfrak{a})$, then

• All the disks have forms
$$H = \begin{bmatrix} s & w \\ \overline{w} & t \end{bmatrix} \in M_{2,2}(\mathfrak{a}).$$

- All the signed curvatures s and co-curvatures t are in $\mathfrak{a} \cap \mathbb{R}$.
- All the C-corners w are in a.

 \mathcal{D}_1 and \mathcal{D}_2 are externally tangent disks if and only if the normalized forms satisfy

 D_1 and D_2 are externally tangent disks if and only if the normalized forms satisfy $det(H_1 + H_2) = 0$.

 D_1 and D_2 are externally tangent disks if and only if the normalized forms satisfy det $(H_1 + H_2) = 0$. If the normalized forms $\{H_j\}$ satisfy

$$c_1H_1+\cdots+c_nH_n=O,$$

then for any Möbius transformation m,

(

 D_1 and D_2 are externally tangent disks if and only if the normalized forms satisfy det $(H_1 + H_2) = 0$. If the normalized forms $\{H_j\}$ satisfy

$$c_1H_1+\cdots+c_nH_n=O,$$

then for any Möbius transformation m,

(

$$c_1m(H_1)+\cdots+c_nm(H_n)=O.$$

 D_1 and D_2 are externally tangent disks if and only if the normalized forms satisfy det $(H_1 + H_2) = 0$. If the normalized forms $\{H_j\}$ satisfy

$$c_1H_1+\cdots+c_nH_n=O,$$

then for any Möbius transformation m,

(

$$c_1m(H_1)+\cdots+c_nm(H_n)=O.$$

Proof:

 D_1 and D_2 are externally tangent disks if and only if the normalized forms satisfy det $(H_1 + H_2) = 0$. If the normalized forms $\{H_j\}$ satisfy

$$c_1H_1+\cdots+c_nH_n=O,$$

then for any Möbius transformation m,

$$c_1m(H_1)+\cdots+c_nm(H_n)=O.$$

Proof: Distributive law of matrix multiplication.

Quadratic relations

 $b(u, v) = \text{real symmetric bilinear form in } u = (u_1, \dots, u_n) \text{ and } v = (v_1, \dots, v_n).$ If $\{H_j = \begin{bmatrix} s_j & w_j \\ \hline w_j & t_j \end{bmatrix}\}_{j=1}^n$ satisfy

Quadratic relations

b(u, v) = real symmetric bilinear form in $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n).$ If $\{H_j = \begin{bmatrix} s_j & w_j \\ \overline{w_i} & t_i \end{bmatrix}\}_{j=1}^n$ satisfy b(s, s) = 0, b(w, w) = 0, b(t, t) = 0,b(s, w) = 0, b(t, w) = 0, $b(s, t) = -b(w, \overline{w}).$ then, for Möbius *m*, $\{m(H_j) = \begin{vmatrix} s'_j & w'_j \\ w'_i & t'_i \end{vmatrix}\}$ satisfy

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit Se

Quadratic relations

b(u, v) = real symmetric bilinear form in $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n).$ If $\{H_j = \begin{bmatrix} s_j & w_j \\ \overline{w_i} & t_i \end{bmatrix}\}_{j=1}^n$ satisfy b(s, s) = 0, b(w, w) = 0, b(t, t) = 0,b(t,w)=0,b(s, w) = 0, $b(s,t) = -b(w,\overline{w}).$ then, for Möbius *m*, $\{m(H_j) = \begin{vmatrix} s'_j & w'_j \\ w'_i & t'_i \end{vmatrix}\}$ satisfy b(s', s') = 0, b(w', w') = 0, b(t', t') = 0,b(s', w') = 0, b(t', w') = 0, $b(s', t') = -b(w', \overline{w'}).$

Hermitian relation

Proof of binary form theorem:

Just verify it for
$$m = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $\begin{bmatrix} \alpha & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. (RREF)

Just verify it for
$$m = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $\begin{bmatrix} \alpha & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. (RREF)

Just verify it for
$$m = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $\begin{bmatrix} \alpha & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. (RREF)

Corollary: Given $\{H_j\}$ satisfies the 6 stated equations,

Just verify it for
$$m = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $\begin{bmatrix} \alpha & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. (RREF)

Corollary: Given $\{H_j\}$ satisfies the 6 stated equations,

 $b(\overline{H},H)=O.$

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit Sc. Octo

Hermitian Descartes

Hermitian Descartes

Standard Descartes Forms:

$$\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}, \begin{bmatrix} 2 & -i \\ i & 0 \end{bmatrix}, \begin{bmatrix} 0 & -i \\ i & 2 \end{bmatrix}, \begin{bmatrix} 2 & -2-i \\ -2+i & 2 \end{bmatrix}.$$

Hermitian Descartes

Standard Descartes Forms:

$$\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}, \begin{bmatrix} 2 & -i \\ i & 0 \end{bmatrix}, \begin{bmatrix} 0 & -i \\ i & 2 \end{bmatrix}, \begin{bmatrix} 2 & -2-i \\ -2+i & 2 \end{bmatrix}.$$
$$b(u, v) = 2\sum_{j=1}^{4} u_j v_j - \left(\sum_{j=1}^{4} u_j\right) \left(\sum_{j=1}^{4} v_j\right)$$

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit Sc

Hermitian Descartes

Standard Descartes Forms:

$$\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}, \begin{bmatrix} 2 & -i \\ i & 0 \end{bmatrix}, \begin{bmatrix} 0 & -i \\ i & 2 \end{bmatrix}, \begin{bmatrix} 2 & -2-i \\ -2+i & 2 \end{bmatrix},$$
$$b(u, v) = 2\sum_{j=1}^{4} u_{j}v_{j} - \left(\sum_{j=1}^{4} u_{j}\right)\left(\sum_{j=1}^{4} v_{j}\right)$$
$$2\sum_{j=1}^{4} \overline{H_{j}}H_{j} = \left(\sum_{j=1}^{4} \overline{H_{j}}\right)\left(\sum_{j=1}^{4} H_{j}\right).$$

Hermitian Descartes

Standard Descartes Forms:

$$\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}, \begin{bmatrix} 2 & -i \\ i & 0 \end{bmatrix}, \begin{bmatrix} 0 & -i \\ i & 2 \end{bmatrix}, \begin{bmatrix} 2 & -2-i \\ -2+i & 2 \end{bmatrix}.$$

$$b(u, v) = 2\sum_{j=1}^{4} u_j v_j - \left(\sum_{j=1}^{4} u_j\right) \left(\sum_{j=1}^{4} v_j\right)$$

$$2\sum_{j=1}^{4} \overline{H_j} H_j = \left(\sum_{j=1}^{4} \overline{H_j}\right) \left(\sum_{j=1}^{4} H_j\right).$$

$$2(s_1^2 + s_2^2 + s_3^2 + s_4^2) = (s_1 + s_2 + s_3 + s_4)^2. \text{ (original version)}$$

Standard Coxeter Forms: $\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$, $\begin{bmatrix} 2 & -i \\ i & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & -i \\ i & 2 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Standard Coxeter Forms:
$$\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$$
, $\begin{bmatrix} 2 & -i \\ i & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & -i \\ i & 2 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
 $b(u, v) = 2u_4v_4 - \sum_{1 \le j < k \le 3} u_jv_k + u_kv_j$.

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit Se

Standard Coxeter Forms:
$$\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}, \begin{bmatrix} 2 & -i \\ i & 0 \end{bmatrix}, \begin{bmatrix} 0 & -i \\ i & 2 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$
$$b(u, v) = 2u_4v_4 - \sum_{\substack{1 \le j < k \le 3 \\ \overline{H_j}H_k + \overline{H_k}H_j.}} u_jv_k + u_kv_j.$$

Standard Coxeter Forms:
$$\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$$
, $\begin{bmatrix} 2 & -i \\ i & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & -i \\ i & 2 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
 $b(u, v) = 2u_4v_4 - \sum_{\substack{1 \le j < k \le 3 \\ \overline{H_j}H_k} u_jv_k + u_kv_j$.
 $2\overline{H_4}H_4 = \sum_{\substack{1 \le j < k \le 3 \\ \overline{H_j}H_k} \overline{H_k}H_j$.
 $s_4^2 = s_1s_2 + s_2s_3 + s_3s_1$. (original version)

$$H_{+} + H_{-} = 2\tau^2 J$$
 where $\tau = \tan \frac{\pi}{n}$, $J = \frac{1}{n} \sum_{j=1}^{n} H_j$.

18 / 31

$$egin{aligned} & H_+ + H_- = 2 au^2 \ J \ ext{where} \ au &= an rac{\pi}{n}, \ J = rac{1}{n} \sum_{j=1}^n H_j. \ & H_+ = H_\pm \ ext{satisfy, with} \ K &= rac{1}{n} \sum_{j=1}^n \overline{H_j}. \end{aligned}$$

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit Sc

$$H_{+} + H_{-} = 2\tau^{2} J \text{ where } \tau = \tan \frac{\pi}{n}, J = \frac{1}{n} \sum_{j=1}^{n} H_{j}.$$
$$H = H_{\pm} \text{ satisfy, with } K = \frac{1}{n} \sum_{j=1}^{n} \overline{H_{j}} H_{j},$$
$$2(\overline{H}H + \tau^{2}K) = \overline{(H + \tau^{2}J)}(H + \tau^{2}J) + (3 - \tau^{2})\tau^{2}\overline{J}J$$

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit S

$$H_{+} + H_{-} = 2\tau^{2} J \text{ where } \tau = \tan \frac{\pi}{n}, J = \frac{1}{n} \sum_{j=1}^{n} H_{j}.$$

$$H = H_{\pm} \text{ satisfy, with } K = \frac{1}{n} \sum_{j=1}^{n} \overline{H_{j}} H_{j},$$

$$\frac{2(\overline{H}H + \tau^{2}K) = \overline{(H + \tau^{2}J)}(H + \tau^{2}J) + (3 - \tau^{2})\tau^{2}\overline{J}J}{2\left(s^{2} + \frac{\tau^{2}}{n} \sum_{j=1}^{n} s_{j}^{2}\right) = \left(s + \frac{\tau^{2}}{n} \sum_{j=1}^{n} s_{j}\right)^{2} + \frac{(3 - \tau^{2})\tau^{2}}{n^{2}} \left(\sum_{j=1}^{n} s_{j}\right)^{2}.$$

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit Se

Another Stanza?

Possibly insert into the poetry of Soddy-Lagarias-Mallows-Wilkes ...??

19/31

Possibly insert into the poetry of Soddy-Lagarias-Mallows-Wilkes ...??

Much labor has made us aware, The form of a circle is square. Though surely a square is not round, A similar rule again is found. Possibly insert into the poetry of Soddy-Lagarias-Mallows-Wilkes ...??

Much labor has made us aware, The form of a circle is square. Though surely a square is not round, A similar rule again is found.

 $G = \langle a_1, \dots, a_g \rangle$ is a freely generated, maximally parabolic, discrete group of Möbius transformations. From Keen-Maskit-Series, 1993:

20 / 31

 $G = \langle a_1, \ldots, a_g \rangle$ is a freely generated, maximally parabolic, discrete group of Möbius transformations. From Keen-Maskit-Series, 1993:

• G is geometrically finite.

20/31

 $G = \langle a_1, \ldots, a_g \rangle$ is a freely generated, maximally parabolic, discrete group of Möbius transformations. From Keen-Maskit-Series, 1993:

- G is geometrically finite.
- G is an algebraic limit of Schottky groups.

 $G = \langle a_1, \ldots, a_g \rangle$ is a freely generated, maximally parabolic, discrete group of Möbius transformations. From Keen-Maskit-Series, 1993:

- G is geometrically finite.
- G is an algebraic limit of Schottky groups.
- Every component of the ordinary set of G is a disk on which G represents a triply-punctured sphere.

 $G = \langle a_1, \ldots, a_g \rangle$ is a freely generated, maximally parabolic, discrete group of Möbius transformations. From Keen-Maskit-Series, 1993:

- G is geometrically finite.
- G is an algebraic limit of Schottky groups.
- Every component of the ordinary set of G is a disk on which G represents a triply-punctured sphere.
- There are 2g 2 equivalence classes of disks in the ordinary set.

20/31

 $G = \langle a_1, \ldots, a_g \rangle$ is a freely generated, maximally parabolic, discrete group of Möbius transformations. From Keen-Maskit-Series, 1993:

- G is geometrically finite.
- G is an algebraic limit of Schottky groups.
- Every component of the ordinary set of *G* is a disk on which *G* represents a triply-punctured sphere.
- There are 2g 2 equivalence classes of disks in the ordinary set.
- There are 3g 3 classes of words which are parabolic in G, up to conjugacy, inverse, and powers.

 $G = \langle a_1, \ldots, a_g \rangle$ is a freely generated, maximally parabolic, discrete group of Möbius transformations. From Keen-Maskit-Series, 1993:

- G is geometrically finite.
- G is an algebraic limit of Schottky groups.
- Every component of the ordinary set of G is a disk on which G represents a triply-punctured sphere.
- There are 2g 2 equivalence classes of disks in the ordinary set.
- There are 3g 3 classes of words which are parabolic in *G*, up to conjugacy, inverse, and powers.
- Any two representations of G for which the same words in $a_j^{\pm 1}$ are parabolic are conjugate in $PSL_2(\mathbb{C})$.

• Floyd, 1980: continuous map $\phi : \overline{G} \to \text{Limit Set } \Lambda(G)$, where $\overline{G} =$ group completion of G. (infinite words in G)

- Floyd, 1980: continuous map $\phi : \overline{G} \to \text{Limit Set } \Lambda(G)$, where $\overline{G} =$ group completion of G. (infinite words in G)
- ϕ is 1–1 except at fixed points of parabolic elements where it is 2–1.

- Floyd, 1980: continuous map $\phi : \overline{G} \to \text{Limit Set } \Lambda(G)$, where $\overline{G} =$ group completion of G. (infinite words in G)
- ϕ is 1–1 except at fixed points of parabolic elements where it is 2–1.
- $\Lambda(a_i^{\pm 1}) = \text{all limit points equal to } \phi(\text{infinite word beginning with } a_i^{\pm 1}).$

- Floyd, 1980: continuous map $\phi : \overline{G} \to \text{Limit Set } \Lambda(G)$, where $\overline{G} =$ group completion of G. (infinite words in G)
- ϕ is 1–1 except at fixed points of parabolic elements where it is 2–1.
- $\Lambda(a_i^{\pm 1}) = \text{all limit points equal to } \phi(\text{infinite word beginning with } a_i^{\pm 1}).$
- Circle Web of G: all disks in the ordinary set of G with boundary circles intersecting at least two Λ(a_i^{±1}).

- Floyd, 1980: continuous map $\phi : \overline{G} \to \text{Limit Set } \Lambda(G)$, where $\overline{G} =$ group completion of G. (infinite words in G)
- ϕ is 1–1 except at fixed points of parabolic elements where it is 2–1.
- $\Lambda(a_i^{\pm 1}) = \text{all limit points equal to } \phi(\text{infinite word beginning with } a_i^{\pm 1}).$
- Circle Web of G: all disks in the ordinary set of G with boundary circles intersecting at least two Λ(a_i^{±1}).
- The circles in the web pass through fixed points of parabolic words of minimal length.

- Floyd, 1980: continuous map $\phi : \overline{G} \to \text{Limit Set } \Lambda(G)$, where $\overline{G} =$ group completion of G. (infinite words in G)
- ϕ is 1–1 except at fixed points of parabolic elements where it is 2–1.
- $\Lambda(a_i^{\pm 1}) = \text{all limit points equal to } \phi(\text{infinite word beginning with } a_i^{\pm 1}).$
- Circle Web of G: all disks in the ordinary set of G with boundary circles intersecting at least two Λ(a_i^{±1}).
- The circles in the web pass through fixed points of parabolic words of minimal length.
- The junction circles pass through three such fixed points, and are determined by those points. Each equivalence class of disks contains at least one junction disk.

- Floyd, 1980: continuous map $\phi : \overline{G} \to \text{Limit Set } \Lambda(G)$, where $\overline{G} =$ group completion of G. (infinite words in G)
- ϕ is 1–1 except at fixed points of parabolic elements where it is 2–1.
- $\Lambda(a_i^{\pm 1}) = \text{all limit points equal to } \phi(\text{infinite word beginning with } a_i^{\pm 1}).$
- Circle Web of G: all disks in the ordinary set of G with boundary circles intersecting at least two Λ(a_i^{±1}).
- The circles in the web pass through fixed points of parabolic words of minimal length.
- The junction circles pass through three such fixed points, and are determined by those points. Each equivalence class of disks contains at least one junction disk.
- There is an algebraic number field K such that all the fixed points of parabolic elements may be chosen in K. ("field of definition")

• Gens: $a(z) = 1 + \sqrt{-3} + \frac{1}{z}$, b(z) = z + 2. Parabolic: Ba², BAba, b.

• Gens: $a(z) = 1 + \sqrt{-3} + \frac{1}{z}$, b(z) = z + 2. Parabolic: Ba^2 , BAba, b. • Circles: $L_0 = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$, $L_1 = \begin{bmatrix} 0 & -i \\ i & 2\sqrt{3} \end{bmatrix}$, $C_0 = \begin{bmatrix} \sqrt{3} & \sqrt{3} - i \\ \sqrt{3} + i & \sqrt{3} \end{bmatrix}$, $C_1 = \begin{bmatrix} \sqrt{3} & -2i \\ 2i & \sqrt{3} \end{bmatrix}$, $C_2 = \begin{bmatrix} \sqrt{3} & -\sqrt{3} - i \\ -\sqrt{3} + i & \sqrt{3} \end{bmatrix}$, $C_3 = \begin{bmatrix} \sqrt{3} & -2\sqrt{3} - 2i \\ -2\sqrt{3} + 2i & 5\sqrt{3} \end{bmatrix}$.

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit So

• Gens: $a(z) = 1 + \sqrt{-3} + \frac{1}{z}$, b(z) = z + 2. Parabolic: Ba^2 , BAba, b. • Circles: $L_0 = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$, $L_1 = \begin{bmatrix} 0 & -i \\ i & 2\sqrt{3} \end{bmatrix}$, $C_0 = \begin{bmatrix} \sqrt{3} & \sqrt{3} - i \\ \sqrt{3} + i & \sqrt{3} \end{bmatrix}$, $C_1 = \begin{bmatrix} \sqrt{3} & -2i \\ 2i & \sqrt{3} \end{bmatrix}$, $C_2 = \begin{bmatrix} \sqrt{3} & -\sqrt{3} - i \\ -\sqrt{3} + i & \sqrt{3} \end{bmatrix}$, $C_3 = \begin{bmatrix} \sqrt{3} & -2\sqrt{3} - 2i \\ -2\sqrt{3} + 2i & 5\sqrt{3} \end{bmatrix}$.

• Curvatures: $n\sqrt{3}$, n = 0,1,2,5,6,8,9,12,13,17,18,20,21,22,24,25,29,...

• Gens: $a(z) = 1 + \sqrt{-3} + \frac{1}{z}$, b(z) = z + 2. Parabolic: Ba^2 , BAba, b. • Circles: $L_0 = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$, $L_1 = \begin{bmatrix} 0 & -i \\ i & 2\sqrt{3} \end{bmatrix}$, $C_0 = \begin{bmatrix} \sqrt{3} & \sqrt{3} - i \\ \sqrt{3} + i & \sqrt{3} \end{bmatrix}$, $C_1 = \begin{bmatrix} \sqrt{3} & -2i \\ 2i & \sqrt{3} \end{bmatrix}$, $C_2 = \begin{bmatrix} \sqrt{3} & -\sqrt{3} - i \\ -\sqrt{3} + i & \sqrt{3} \end{bmatrix}$, $C_3 = \begin{bmatrix} \sqrt{3} & -2\sqrt{3} - 2i \\ -2\sqrt{3} + 2i & 5\sqrt{3} \end{bmatrix}$.

• Curvatures: $n\sqrt{3}$, n = 0,1,2,5,6,8,9,12,13,17,18,20,21,22,24,25,29,...• \mathbb{C} -corners: all of form $m\sqrt{3} + ni$, $m, n \in \mathbb{Z}$.

• Gens: $a(z) = 1 + \sqrt{-3} + \frac{1}{z}$, b(z) = z + 2. Parabolic: Ba^2 , BAba, b. • Circles: $L_0 = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$, $L_1 = \begin{bmatrix} 0 & -i \\ i & 2\sqrt{3} \end{bmatrix}$, $C_0 = \begin{bmatrix} \sqrt{3} & \sqrt{3} - i \\ \sqrt{3} + i & \sqrt{3} \end{bmatrix}$, $C_1 = \begin{bmatrix} \sqrt{3} & -2i \\ 2i & \sqrt{3} \end{bmatrix}$, $C_2 = \begin{bmatrix} \sqrt{3} & -\sqrt{3} - i \\ -\sqrt{3} + i & \sqrt{3} \end{bmatrix}$, $C_3 = \begin{bmatrix} \sqrt{3} & -2\sqrt{3} - 2i \\ -2\sqrt{3} + 2i & 5\sqrt{3} \end{bmatrix}$.

• Curvatures: $n\sqrt{3}$, n = 0,1,2,5,6,8,9,12,13,17,18,20,21,22,24,25,29,...

- \mathbb{C} -corners: all of form $m\sqrt{3} + ni$, $m, n \in \mathbb{Z}$.
- Recursion: $C_0 + C_2 = 2L_0 + 2C_1$, $C_1 + C_3 = 2L_1 + 2C_2$.

Maskit 1/3 Cusp

• Parabolic: Ba³, BAba, b.

Maskit 1/3 Cusp

• Parabolic:
$$Ba^3$$
, $BAba$, b .
• Gens: $b(z) = z + 2$,
 $a(z) = \mu + \frac{1}{z} = \frac{4 - \sqrt{2\sqrt{41} - 10} + i\left(2 + \sqrt{10 + 2\sqrt{41}}\right)}{4} + \frac{1}{z}$.

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit Science

Maskit 1/3 Cusp

• Parabolic:
$$Ba^3$$
, $BAba$, b .
• Gens: $b(z) = z + 2$,
 $a(z) = \mu + \frac{1}{z} = \frac{4 - \sqrt{2\sqrt{41} - 10} + i\left(2 + \sqrt{10 + 2\sqrt{41}}\right)}{4} + \frac{1}{z}$.
• $\mu^2 - (2 + i)\mu + 2 + 2i = 0$.

Maskit $3/10 = \frac{1}{3+\frac{1}{3}}$ Cusp

24 / 31

Maskit $3/10 = \frac{1}{3+\frac{1}{3}}$ Cusp

• Parabolic: Ba⁴Ba³Ba³, BAba, b.

24 / 31

Maskit $3/10 = \frac{1}{3+\frac{1}{3}}$ Cusp

• Parabolic: $Ba^4Ba^3Ba^3$, BAba, b. • Gens: b(z) = z + 2, $a(z) = \mu + \frac{1}{z} = \frac{1 + \sqrt{-11}}{2} + \frac{1}{z}$.

Maskit $3/10 = \frac{1}{3+\frac{1}{3}}$ Cusp

• Parabolic: $Ba^4Ba^3Ba^3$, BAba, b. • Gens: b(z) = z + 2, $a(z) = \mu + \frac{1}{z} = \frac{1 + \sqrt{-11}}{2} + \frac{1}{z}$. • $\mu^2 - \mu + 3 = 0$.

Maskit $3/10 = \frac{1}{3+\frac{1}{3}}$ Cusp

• Parabolic:
$$Ba^4Ba^3Ba^3$$
, $BAba$, b .
• Gens: $b(z) = z + 2$, $a(z) = \mu + \frac{1}{z} = \frac{1 + \sqrt{-11}}{2} + \frac{1}{z}$.
• $\mu^2 - \mu + 3 = 0$.
• Circles $L_0 = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$, $L_1 = \begin{bmatrix} 0 & -i \\ i & \sqrt{11} \end{bmatrix}$, $C_0 = \begin{bmatrix} \sqrt{11} & -i + \sqrt{11} \\ i + \sqrt{11} & \sqrt{11} \end{bmatrix}$, ...

Maskit $3/10 = \frac{1}{3+\frac{1}{3}}$ Cusp

• Parabolic: $Ba^4Ba^3Ba^3$, BAba, b. • Gens: b(z) = z + 2, $a(z) = \mu + \frac{1}{z} = \frac{1 + \sqrt{-11}}{2} + \frac{1}{z}$. • $\mu^2 - \mu + 3 = 0$. • Circles $L_0 = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$, $L_1 = \begin{bmatrix} 0 & -i \\ i & \sqrt{11} \end{bmatrix}$, $C_0 = \begin{bmatrix} \sqrt{11} & -i + \sqrt{11} \\ i + \sqrt{11} & \sqrt{11} \end{bmatrix}$, ... • Curvatures: $n\sqrt{11}$, n = 0.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, ...

Maskit $3/10 = \frac{1}{3+\frac{1}{3}}$ Cusp

• Parabolic: Ba ⁴ Ba ³ Ba ³ , BAba, b.
• Gens: $b(z) = z + 2$, $a(z) = \mu + \frac{1}{z} = \frac{1 + \sqrt{-11}}{2} + \frac{1}{z}$.
• $\mu^2 - \mu + 3 = 0.$
• Circles $L_0 = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$, $L_1 = \begin{bmatrix} 0 & -i \\ i & \sqrt{11} \end{bmatrix}$, $C_0 = \begin{bmatrix} \sqrt{11} & -i + \sqrt{11} \\ i + \sqrt{11} & \sqrt{11} \end{bmatrix}$,
• Curvatures: $n\sqrt{11}$, $n =$
$0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, \dots$
• C-corners: of form $\frac{m\sqrt{11} + ni}{2}$, $n \equiv m \pmod{2}$.
(ロト・4回ト・4回ト・3回・1000)

Maskit $3/10 = \frac{1}{3+\frac{1}{3}}$ Cusp

• Parabolic: $Ba^4Ba^3Ba^3$, $BAba$, b.
• Gens: $b(z) = z + 2$, $a(z) = \mu + \frac{1}{z} = \frac{1 + \sqrt{-11}}{2} + \frac{1}{z}$.
• $\mu^2 - \mu + 3 = 0.$
• Circles $L_0 = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$, $L_1 = \begin{bmatrix} 0 & -i \\ i & \sqrt{11} \end{bmatrix}$, $C_0 = \begin{bmatrix} \sqrt{11} & -i + \sqrt{11} \\ i + \sqrt{11} & \sqrt{11} \end{bmatrix}$,
• Curvatures: $n\sqrt{11}$, $n =$
$0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, \dots$
• C-corners: of form $\frac{m\sqrt{11} + ni}{2}$, $n \equiv m \pmod{2}$.
• Recursions: $4C_0 + C_4 = \frac{5}{3}L_0 + 3C_1$, $C_0 + C_3 = L_1 + C_1 = L_0 + C_2$, and
Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit S October 25, 2019 24 / 31

Map of Maskit Cusps

Genus 2 Maximal Cusp

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit Se

Genus 2 Maximal Cusp

Genus 2 Maximal Cusp

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit S

Genus 3 Maximal Cusp

KRA Mu1= 0.00000000004i 2.000000000 Special words: acAB bC b c bABa a

KRA Mu2= 0.0000000000+i 2.000000000

29/31

Maskit 3/10 Fruit Salad

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit Se

Thanks!

David Wright (Oklahoma State University) Algebraic Relations and Integrality of Limit Sec.